Absolute waarde: verschil tussen versies

Uit Wikikids
Naar navigatie springen Naar zoeken springen
(nieuw)
(geen verschil)

Versie van 15 sep 2019 21:36

In de wiskunde is de absolute waarde of modulus de waarde van een getal als het teken buiten beschouwing blijft. Dus als het getal positief is: dit getal zelf; als het negatief is, het positieve getal. Noemen we dit getal a, dan schrijven we |a|, waarbij a is omgeven door zogeheten modulusstreepjes. Door deze streepjes wordt a dus ontdaan van + of – tekens:

|3| = 3; |-3| = 3; |√2 – 5| = |-(-√2 + 5)| = 5 - √2 enzovoort. 

De definitie luidt: |a| = a als a ≥ 0 en |a| = - a als a < 0. Of korter: |a| = √a².

Op school kun je er allerlei vraagstukken over tegenkomen, vaak in combinatie met vergelijkingen en ongelijkheden. Een voorbeeld. Los op:

|x| = |2x – 1|.

1ste oplossing. Door te kwadrateren verdwijnen de modulusstreepjes: (|a|) = (√a²}²:

x² = 4x² - 4x + 1; 3x² - 4x + 1 = 0; (x – 1)(3x – 1) = 0; x1 = 1; x2 = 1/3.

Vullen we de oplossingen in de oorspronkelijke vergelijking in om na te gaan of ze voldoen:

1 = 2 – 1; 1/3 = |- 1/3| = 1/3, in orde.

2de oplossing:

|x| = |2x – 1|.

Stel x = a en 2x – 1 = b, dan krijgen we

|a| = |b|; a²= b²; a² – b² = (a - b)(a + b) = 0; x – 2x + 1 = 0 met x = 1 en 3x = 1 met x = 1/3.

3de oplossing:

|x| = x als x ≥ 0, x = - x als x < 0.
|2x – 1| = 2x – 1 als 2x – 1 ≥ 0, dus als x ≥ ½ en |2x – 1| = - 2x + 1 als 2x – 1 < 0, dus als x < ½.

Er zijn dus drie aansluitende gebieden, die onderzocht moeten worden: x < 0, 0 ≤ x < ½ en x ≥ ½.

x < 0. Dan is |x| = - x en |2x – 1|  - 2x + 1, dus - x = - 2x + 1 met x = 1.

Maar deze voldoet niet aan x < 0.

0 ≤ x < ½. Hier is |x| x en |2x – 1|  - 2x + 1, of x = - 2x + 1 met x = 1/3. Deze voldoet.
x ≥ ½. Nu is |x| = x en |2x – 1| =  2x – 1, zodat x = 2x – 1, - x = - 1, x = 1. We vinden weer x1 = 1 en x2 = ½. 

Nog een voorbeeld. Los x op uit:

|x² - 2x|  <  x + 4 

Oplossing: omdat |x² - 2x| voor iedere waarde van x positief is, is x + 4 eveneens positief en mogen we beide leden kwadrateren. De ongelijkheid is dus gelijkwaardig met

(x² - 2x)²  <  (x + 4)². 

Dan is

(x² - 2x)²  -  (x + 4)² < 0;
(x² - 2x + x + 4) (x² - 2x - x - 4) < 0;
(x² - x  + 4) (x² - 3x  - 4) < 0.

De eerste factor is niet te ontbinden, uit de tweede volgt

- 1 < x < 4.
Afkomstig van Wikikids , de interactieve Nederlandstalige Internet-encyclopedie voor en door kinderen. "https://wikikids.nl/index.php?title=Absolute_waarde&oldid=576641"