Filterlogboek

Filternavigatie (Hoofdmenu | Recente filterwijzigingen | Bewerkingen onderzoeken | Filterlogboek)
Naar navigatie springen Naar zoeken springen
Details voor logboekregel 25.867

27 jan 2021 12:15: Dylankippens (overleg | bijdragen) heeft filter 4 laten afgaan tijdens het uitvoeren van de handeling "edit" op Bol (lichaam). Genomen maatregel: Waarschuwen; Filterbeschrijving: Kletsen (onderzoeken)

Wijzigingen in de bewerking

  
 
==Oppervlakte==
 
==Oppervlakte==
De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]].  
+
De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]]. hallo! als je dit leest... GENIAAL HAHAHAHA
  
 
==Inhoud==
 
==Inhoud==
 
Een bol heeft net als elk ander ruimtefiguur een inhoud. Net als bij de oppervlakte moet je eerst het [[middelpunt]] weten. vervolgens teken je twee [[diameter]]s. Een van boven naar beneden en een van links naar rechts. De diameters moeten [[loodrecht]] op elk staan. Je meet nu de lengte van één diameter en deelt het door twee. Nu heb je de lengte van de [[straal]]. Vervolgens doe je deze formule: <nowiki>4/3 x π x straal³ = inhoud</nowiki>. 4/3 is een [[breuk]]. De π is een [[Pi]], dit is een getal dat nooit op lijkt te houden. Het woord straal haal je weg en daar vul je de lengte van de straal in. Het ³-tekentje betekend [[derde macht]].  
 
Een bol heeft net als elk ander ruimtefiguur een inhoud. Net als bij de oppervlakte moet je eerst het [[middelpunt]] weten. vervolgens teken je twee [[diameter]]s. Een van boven naar beneden en een van links naar rechts. De diameters moeten [[loodrecht]] op elk staan. Je meet nu de lengte van één diameter en deelt het door twee. Nu heb je de lengte van de [[straal]]. Vervolgens doe je deze formule: <nowiki>4/3 x π x straal³ = inhoud</nowiki>. 4/3 is een [[breuk]]. De π is een [[Pi]], dit is een getal dat nooit op lijkt te houden. Het woord straal haal je weg en daar vul je de lengte van de straal in. Het ³-tekentje betekend [[derde macht]].  
 
[[Categorie:Ruimtelijke figuren]]
 
[[Categorie:Ruimtelijke figuren]]

Maatregelparameters

VariabeleWaarde
Of de bewerking wel of niet als klein gemarkeerd is (niet langer in gebruik) (minor_edit)
false
Aantal bewerkingen gebruiker (user_editcount)
0
Gebruikersaccountnaam (user_name)
'Dylankippens'
Groepen (inclusief impliciete) waar gebruiker lid van is (user_groups)
[ 0 => '*', 1 => 'user' ]
Rechten die een gebruiker heeft (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'writeapi', 3 => 'viewmywatchlist', 4 => 'editmywatchlist', 5 => 'viewmyprivateinfo', 6 => 'editmyprivateinfo', 7 => 'editmyoptions', 8 => 'abusefilter-log-detail', 9 => 'abusefilter-view', 10 => 'abusefilter-log', 11 => 'move-rootuserpages', 12 => 'edit', 13 => 'createpage', 14 => 'createtalk', 15 => 'upload', 16 => 'reupload', 17 => 'reupload-shared', 18 => 'minoredit', 19 => 'editmyusercss', 20 => 'editmyuserjson', 21 => 'editmyuserjs', 22 => 'purge', 23 => 'sendemail', 24 => 'applychangetags', 25 => 'changetags', 26 => 'editcontentmodel', 27 => 'spamblacklistlog' ]
Pagina-ID (page_id)
75957
Paginanaamruimte (page_namespace)
0
Paginanaam (zonder naamruimte) (page_title)
'Bol (lichaam)'
Volledige paginanaam (page_prefixedtitle)
'Bol (lichaam)'
Handeling (action)
'edit'
Bewerkingssamenvatting (summary)
'/* Oppervlakte */ '
Oude inhoudsmodel (old_content_model)
'wikitext'
Nieuw inhoudsmodel (new_content_model)
'wikitext'
Wikitekst van de oude pagina vóór de bewerking (old_wikitext)
'[[File:Blender-meta-ball.png|250px|right|thumb|De foto van een bol.]] De '''Bol''' is een [[ruimtefiguur]]. De bol heeft geen [[hoek]]en of [[rib]]ben. Het heeft alleen één gebogen vlak. De bol is aan alle kanten rond. Voorbeelden van bolvormige dingen zijn, een [[voetbal]] en een [[globe]]. In het midden heeft de bol een [[middelpunt]]. Vanaf het middelpunt lopen oneindig veel [[diameter]]s en [[Straal (wiskunde)|stralen]]. ==Oppervlakte== De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]]. ==Inhoud== Een bol heeft net als elk ander ruimtefiguur een inhoud. Net als bij de oppervlakte moet je eerst het [[middelpunt]] weten. vervolgens teken je twee [[diameter]]s. Een van boven naar beneden en een van links naar rechts. De diameters moeten [[loodrecht]] op elk staan. Je meet nu de lengte van één diameter en deelt het door twee. Nu heb je de lengte van de [[straal]]. Vervolgens doe je deze formule: <nowiki>4/3 x π x straal³ = inhoud</nowiki>. 4/3 is een [[breuk]]. De π is een [[Pi]], dit is een getal dat nooit op lijkt te houden. Het woord straal haal je weg en daar vul je de lengte van de straal in. Het ³-tekentje betekend [[derde macht]]. [[Categorie:Ruimtelijke figuren]]'
Wikitekst van de nieuwe pagina ná de bewerking (new_wikitext)
'[[File:Blender-meta-ball.png|250px|right|thumb|De foto van een bol.]] De '''Bol''' is een [[ruimtefiguur]]. De bol heeft geen [[hoek]]en of [[rib]]ben. Het heeft alleen één gebogen vlak. De bol is aan alle kanten rond. Voorbeelden van bolvormige dingen zijn, een [[voetbal]] en een [[globe]]. In het midden heeft de bol een [[middelpunt]]. Vanaf het middelpunt lopen oneindig veel [[diameter]]s en [[Straal (wiskunde)|stralen]]. ==Oppervlakte== De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]]. hallo! als je dit leest... GENIAAL HAHAHAHA ==Inhoud== Een bol heeft net als elk ander ruimtefiguur een inhoud. Net als bij de oppervlakte moet je eerst het [[middelpunt]] weten. vervolgens teken je twee [[diameter]]s. Een van boven naar beneden en een van links naar rechts. De diameters moeten [[loodrecht]] op elk staan. Je meet nu de lengte van één diameter en deelt het door twee. Nu heb je de lengte van de [[straal]]. Vervolgens doe je deze formule: <nowiki>4/3 x π x straal³ = inhoud</nowiki>. 4/3 is een [[breuk]]. De π is een [[Pi]], dit is een getal dat nooit op lijkt te houden. Het woord straal haal je weg en daar vul je de lengte van de straal in. Het ³-tekentje betekend [[derde macht]]. [[Categorie:Ruimtelijke figuren]]'
Unified diff van wijzigingen in bewerking (edit_diff)
'@@ -3,7 +3,7 @@ ==Oppervlakte== -De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]]. +De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]]. hallo! als je dit leest... GENIAAL HAHAHAHA ==Inhoud== Een bol heeft net als elk ander ruimtefiguur een inhoud. Net als bij de oppervlakte moet je eerst het [[middelpunt]] weten. vervolgens teken je twee [[diameter]]s. Een van boven naar beneden en een van links naar rechts. De diameters moeten [[loodrecht]] op elk staan. Je meet nu de lengte van één diameter en deelt het door twee. Nu heb je de lengte van de [[straal]]. Vervolgens doe je deze formule: <nowiki>4/3 x π x straal³ = inhoud</nowiki>. 4/3 is een [[breuk]]. De π is een [[Pi]], dit is een getal dat nooit op lijkt te houden. Het woord straal haal je weg en daar vul je de lengte van de straal in. Het ³-tekentje betekend [[derde macht]]. [[Categorie:Ruimtelijke figuren]] '
Nieuwe paginagrootte (new_size)
1647
Oude paginagrootte (old_size)
1603
Groottewijziging (edit_delta)
44
Regels toegevoegd in bewerking (added_lines)
[ 0 => 'De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]]. hallo! als je dit leest... GENIAAL HAHAHAHA ' ]
Regels verwijderd in bijdrage (removed_lines)
[ 0 => 'De oppervlakte van de bol is eenvoudig te berekenen. Voor de oppervlakte heb je alleen de lengte van de [[straal]] nodig. Hiervoor gebruiken we de volgende som: 4 x π x straal² = oppervlakte. De vier mag je nooit weglaten of veranderen. De π betekend [[pi]], dit is een getal dat nooit lijkt op te houden. De straal moet je alleen weten. De straal loopt van het [[middelpunt]] in een bol naar de buitenkant. Het ²-tekentje staat voor [[kwadraat]]. ' ]
Of de wijziging wel of niet is gemaakt via een Tor-exitnode (tor_exit_node)
false
UNIX-tijdstempel van wijziging (timestamp)
1611742511
Afkomstig van Wikikids , de interactieve Nederlandstalige Internet-encyclopedie voor en door kinderen. "https://wikikids.nl/Speciaal:Filterlogboek/25867"